Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Med Virol ; 95(4): e28720, 2023 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2299974

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has led to a fundamental number of morbidity and mortality worldwide. Glucosamine was indicated to help prevent and control RNA virus infection preclinically, while its potential therapeutic effects on COVID-19-related outcomes are largely unknown. To assess the association of habitual glucosamine use with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, hospital admission, and mortality with COVID-19 in a large population based cohort. Participants from UK Biobank were reinvited between June and September 2021 to have SARS-CoV-2 antibody testing. The associations between glucosamine use and the risk of SARS-CoV-2 infection were estimated by logistic regression. Hazard ratios (HRs) and 95% confidence intervals (CIs) for COVID-19-related outcomes were calculated using COX proportional hazards model. Furthermore, we carried out propensity-score matching (PSM) and stratified analyses. At baseline, 42 673 (20.7%) of the 205 704 participants reported as habitual glucosamine users. During median follow-up of 1.67 years, there were 15 299 cases of SARS-CoV-2 infection, 4214 cases of COVID-19 hospital admission, and 1141 cases of COVID-19 mortality. The fully adjusted odds ratio of SARS-CoV-2 infection with glucosamine use was 0.96 (95% CI: 0.92-1.01). The fully adjusted HR were 0.80 (95% CI: 0.74-0.87) for hospital admission, and 0.81 (95% CI: 0.69-0.95) for mortality. The logistic regression and Cox proportional hazard analyses after PSM yielded consistent results. Our study demonstrated that habitual glucosamine use is associated with reduced risks of hospital admission and death with COVID-19, but not the incidence of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Estudios de Cohortes , Hospitalización , Hospitales
2.
Chinese Journal of Viral Diseases ; 12(4):284-289, 2022.
Artículo en Chino | GIM | ID: covidwho-2287257

RESUMEN

Objective: To understand the genomic characteristics of SARS-CoV-2 from 40 imported cases with confirmed COVID-19 in Sichuan during January and March 2022. Methods: Total viral RNA was extracted from respiratory samples of 182 confirmed COVID-19 cases who entered China through Chendu International Airport from January to March 2022. Mutation nucleic acid detection kit was used to identify the mutant strains and Illumina sequencing platform was applied for whole genome sequence(WGS) of virus. SARS-CoV-2 reference sequences were downloaded from NCBI database for genetic evolution and antigen variation analysis. The Nextclade and Pangolin online virus analysis platform were used to determine the virus family and type, and to analyze the mutation loci of the virus. The phylogenetic tree was constructed, along with the epidemiological data of cases to analyze the source and correlation of viruses. Results: Among 182 imported COVID-19 cases,B.1.617.2 mutations were identified in 3 cases and B.1.1.529 mutations were detected in 57 cases.A total of 40 SARS-CoV-2 whole genome sequences with coverage>95% were obtained in this study. Nextclade typing analysis showed that 3 sequences belonged to 21J(Delta),5 sequences belonged to 21K(Omicron)and the remaining 32 sequences belonged to 21L(Omicron). Pangolin typing analysis showed that the 3 sequences of 21J(Delta)belonged to AY.4,AY.109and B.1.617.2, the 5sequences of 21K(Omicron)all belonged to BA.1.1, and the remaining 32 sequences of 21L(Omicron)belonged to BA.2. Our sequence results were99.7% consistency with the Omicron variants sequences in current GISAID database. Compared with the reference sequence strain Wuhan-Hu-1(NC_045512.2),45,47and 42nucleotide variation sites and 36,25 and 36amino acid variation sites were found in the 3 sequences of 21J(Delta). There were average 59(26-64)nucleotide mutation sites and 48(10-53)amino acid mutation sites in the 5sequences of 21K(Omicron). The median number of nucleotide mutation sites of 71(66-76)and amino acid mutation sites of 53(40-56)were identified in the 32sequences of 21L(Omicron). Phylogenetic tree analysis showed that 40SARS-CoV-2WGSs were all related to the current variants of concern(VOC). Conclusions Continuous: sequencing of SARS-CoV-2whole genome from imported cases with confirmed COVID-19is of great significance for the prevention and control of the outbreak and prevalence of local epidemic caused by imported viruses in Sichuan.

4.
Zhongguo Bingdubing Zazhi = Chinese Journal of Viral Diseases ; - (4):284, 2022.
Artículo en Inglés | ProQuest Central | ID: covidwho-2040496

RESUMEN

Objective To understand the genomic characteristics of SARS-CoV-2 from 40 imported cases with confirmed COVID-19 in Sichuan during January and March 2022. Methods Total viral RNA was extracted from respiratory samples of 182 confirmed COVID-19 cases who entered China through Chendu International Airport from January to March 2022.Mutation nucleic acid detection kit was used to identify the mutant strains and Illumina sequencing platform was applied for whole genome sequence(WGS) of virus.SARS-CoV-2 reference sequences were downloaded from NCBI database for genetic evolution and antigen variation analysis.The Nextclade and Pangolin online virus analysis platform were used to determine the virus family and type,and to analyze the mutation loci of the virus.The phylogenetic tree was constructed,along with the epidemiological data of cases to analyze the source and correlation of viruses. Results Among 182 imported COVID-19 cases,B.1.617.2 mutations were identified in 3 cases and B.1.1.529 mutations were detected in 57 cases.A total of 40 SARS-CoV-2 whole genome sequences with coverage>95% were obtained in this study.Nextclade typing analysis showed that 3 sequences belonged to 21J(Delta),5 sequences belonged to 21K(Omicron)and the remaining 32 sequences belonged to 21L(Omicron).Pangolin typing analysis showed that the 3 sequences of 21J(Delta)belonged to AY.4,AY.109and B.1.617.2,the 5sequences of 21K(Omicron)all belonged to BA.1.1,and the remaining 32 sequences of 21L(Omicron)belonged to BA.2.Our sequence results were99.7% consistency with the Omicron variants sequences in current GISAID database.Compared with the reference sequence strain Wuhan-Hu-1(NC_045512.2),45,47and 42nucleotide variation sites and 36,25 and 36amino acid variation sites were found in the 3 sequences of 21J(Delta).There were average 59(26-64)nucleotide mutation sites and 48(10-53)amino acid mutation sites in the 5sequences of 21K(Omicron).The median number of nucleotide mutation sites of 71(66-76)and amino acid mutation sites of 53(40-56)were identified in the 32sequences of 21L(Omicron).Phylogenetic tree analysis showed that 40SARS-CoV-2WGSs were all related to the current variants of concern(VOC). Conclusions Continuous sequencing of SARS-CoV-2whole genome from imported cases with confirmed COVID-19is of great significance for the prevention and control of the outbreak and prevalence of local epidemic caused by imported viruses in Sichuan.

6.
Anal Chem ; 93(26): 9174-9182, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1279803

RESUMEN

A rapid, on-site, and accurate SARS-CoV-2 detection method is crucial for the prevention and control of the COVID-19 epidemic. However, such an ideal screening technology has not yet been developed for the diagnosis of SARS-CoV-2. Here, we have developed a deep learning-based surface-enhanced Raman spectroscopy technique for the sensitive, rapid, and on-site detection of the SARS-CoV-2 antigen in the throat swabs or sputum from 30 confirmed COVID-19 patients. A Raman database based on the spike protein of SARS-CoV-2 was established from experiments and theoretical calculations. The corresponding biochemical foundation for this method is also discussed. The deep learning model could predict the SARS-CoV-2 antigen with an identification accuracy of 87.7%. These results suggested that this method has great potential for the diagnosis, monitoring, and control of SARS-CoV-2 worldwide.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , SARS-CoV-2 , Sensibilidad y Especificidad , Espectrometría Raman , Esputo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA